
Multiplexer Enables Pseudomultidrop RS-232 Transmission

A circuit is described that allows four remote RS-232 transceivers to share a single UART. A dual four-to-one multiplexer permits transceiver IC1 to form a network with the four remote transceivers.

RS-232 communications with one μ C and more than one remote system can be problematic, because most μ Cs contain only one UART, which provides an interface between synchronous and asynchronous ports. The multiplexer in the figure below, IC2 , allows multiple channels (four, in this case) to share a single UART. The dual four-to-one multiplexer permits transceiver IC₁ to form a network with the four remote transceivers IC₃ to IC₆. The table that follows defines the channel-selection codes. Selecting Channel 1, for instance, enables IC₁ to communicate with IC₃ without being loaded by IC₄ to IC₆. Pulldown resistors inside the remote transceivers force the outputs of unselected receivers to a known state.

One UART and one multiplexer enable one RS-232 transceiver to communicate with four others.

Channel Selection Codes

Selected channel	A1	A0	EN
All channels disconnected	X	X	0
Channel 1 (IC3)	0	0	1
Channel 2 (IC4)	0	1	1
Channel 3 (IC5)	1	0	1
Channel 4 (IC6)	1	1	1

The circuit's supply-voltage range (3V to 5.5V) makes it compatible with 3V and 5V logic. IC_2 receives its power directly from the V+ and V- terminals of IC_1 , whose ±5.5V outputs come from an internal charge pump. The multiplexer handles rail-to-rail signals, so obtaining its power from IC_1 ensures that RS-232 signals pass directly through, regardless of amplitude. Each transceiver's charge pump requires four small capacitors (not shown), whose values depend on

the V_{DD} range but do not exceed 0.47 μ F. Note that pulling too much current from the charge-pump terminals of IC₁, V+ and V-, can cause these rails to droop and can pull the IC's RS-232 transmission levels out of specification.

A similar version of this article appeared in the September 28, 2000 issue of EDN.

November 2000

More Information

MAX3221: QuickView -- Full (PDF) Data Sheet -- Free Samples
MAX399: QuickView -- Full (PDF) Data Sheet -- Free Samples